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Example of a very predictable 6-day forecast, with “errors of the day” 

Errors of the day tend to be localized and have simple shapes  
(Patil et al, 2001) 
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•  They are instabilities of the background flow 
•  They dominate the analysis and forecast errors 
•  They are not taken into account in data assimilation 

except for 4D-Var and Kalman Filtering (very 
expensive methods) 

•  Our new Local Ensemble Kalman Filter includes the 
“errors of the day” but it can be done with present-day 
computers 

•  We have extended it to 4D EnKF (observations can be 
assimilated at the right time). No adjoint of the model 
required 



x is a model state vector, with 106-8d.o.f., and yo is the set of 
observations, with 105-9 d.o.f. 
R is the observational error covariance,  
B the forecast error covariance. 

• In 3D-Var B is assumed to be constant: it does not include “errors of 
the day”  
•  4D-Var is very expensive and does not provide the analysis error 
covariance.   
•  In Kalman Filtering B is forecasted. It is like running the model N 
times, where N~106-8, so that it is impractical without simplifications 

Distance to forecast Distance to observations 



1) Perturbed observations and ensembles of data assimilation 
•  Evensen, 1994 
•  Houtekamer and Mitchell, 1998 
•  Keppene and Rienecker, 2002 

2) Square root filter, no need for perturbed observations: 
•  Tippett, Anderson, Bishop, Hamill, Whitaker, 2003 
•  Anderson, 2001 
•  Whitaker and Hamill, 2002 
•  Bishop, Etherton and Majumdar, 2001 

3) Local Ensemble Kalman Filtering: done in local patches 
•  Ott et al, 2003, MWR under review 
•  Hunt et al, 2003, Tellus: 4DEnKF 



Background ~106-8 d.o.f. 

The 3D-Var Analysis doesn’t know  
about the errors of the day 

Observations ~105-7 d.o.f. 
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Background error (color) and 3D-Var analysis correction (contours) 

An example with a QG system (Corazza et al, 2003) 



Background ~106-8 d.o.f. 

Errors of the day: they lie 
on a very low-dim attractor 

3D-Var Analysis: doesn’t know  
about the errors of the day 

Observations ~105-7 d.o.f. 



Background ~106-8 d.o.f. 

Errors of the day: they lie 
on the low-dim attractor 

Ensemble Kalman Filter Analysis: 
correction computed in the low dim 
attractor 

3D-Var Analysis: doesn’t know  
about the errors of the day 

Observations ~105-7 d.o.f. 



Background error (color) and LEKF analysis correction 

QG model example of Local Ensemble KF (Corazza et al) 



Background ~106-8 d.o.f. 

Errors of the day: they lie 
on the low-dim attractor 

Observations ~105-7 d.o.f. 

These perturbations represent the  
analysis error covariance and are 
used as initial perturbations for the 
next ensemble forecast 



Background error and 3D-Var analysis increment, June 15 

Again, from the QG simulation (Corazza et al, 2003) 

The 3D-Var does not capture the errors of the day 



Contour interval: 0.005 



Area averaged Analysis Error: 3d-Var (black), LEKF  
(green), LEKF with covariance inflation (yellow) 

3D-Var analysis errors 

Local Ens. Kalman Filter 



time (hours) 

Error2  
(log scale) 

3D-Var forecast errors 

LEKF forecast errors 



•  In the Local Ensemble Kalman Filter we compute the 
generalized “bred vectors” globally but use them locally (3D 
patches around each grid point of ~1000km x 1000km). 
•  These local patches (vertical columns) provide the local 
shape of the “errors of the day” for each grid point. 
•  At the end of the local analysis we create a new global 
analysis and initial perturbations from the solutions obtained 
at each grid point. 
•  This reduces the number of ensemble members needed. 
•  It also allows to compute the KF analysis independently 
at each grid point (“embarrassingly parallel”). 



Results with Lorenz 40 variable model 
•  Used by Anderson (2001), Whitaker and Hamill 

(2002) to validate their ensemble square root filter 
(EnSRF) 

•  A very large global ensemble Kalman Filter 
converges to an “optimal” analysis rms error=0.20  

•  This “optimal” rms error is achieved by the LEKF 
for a range of small ensemble members 

•  We performed experiments for different size 
models: M=40 (original), M=80 and M=120, and 
compared a global KF with the LEKF 



LEKF vs. Global EKF 

•  The global scheme 
requires an increasing 
number of ensemble 
members as the size of the 
system increases 

•  The number of ensemble 
members needed in the 
LEKF is much lower than 
in the global scheme and 
independent of the system 
size  

Global

Local

M=120

M=80
M=40

Szunyogh et al.

M=40

M=120

M=80



Reduced Observational Network 

•  The advantage of the Ensemble Kalman Filters increases as the 
number of observations decreases 

•  LEKF and Global EKF are similarly accurate independently of the 
number of observations  

Direct Insertion
  “3D-Var”

LEKF & Global EKF

Szunyogh et al.



A 
C B C B C B A A 

Schematic of a system with 3 independent regions of instability, 
A, B and C. Each region can have either wave #1 or #2 instability 

BV1 BV2 BV3 

From a local point of view, BV1 and BV2 are enough to represent all  
 possible states.  

From a global point of view, BV2 and BV3 are independent, and  
 there are 63 possible different states… 

Why is the local analysis more efficient? 



•  T62, 28 levels (1.5 million d.o.f.) 
•  The method is model independent: essentially the 

same code was used for the L40 model as for the 
NCEP global spectral model 

•  First simulation with observations at every grid 
point (1.5 million obs). 

•  Very parallel! Each grid point analysis is done 
independently 

•  Very fast! 20 minutes in a single 1GHz Intel 
processor with 10 ensemble members 

From Szunyogh, Kostelich et al 



Local Ensemble Kalman Filter 
•  A local column is defined 

for each grid point 
•  The KFanalysis is updated 

simultaneously at the 
different grid-points 

•  All observations within the 
local region are assimilated 
simultaneously 

Szunyogh et al.



Convergence of the LEKF 

•  For all observed variables, 
the analysis rms error  
converges to a value much 
smaller than the 
observational uncertainty 

•  For the wind components, 
the transient phase is 
longer, especially for the 
smaller ensembles 

•  For the wind components, 
the day-to-day variability 
is larger 

Szunyogh et al.

N=40, 10% obs 
N=80, 10% obs 

N=80, 100% obs 

N=80, 100% obs 
N=80, 10% obs 

N=40, 10% obs 

Obs error 

Obs error 



Timing results 

•  Wind, temperature, and surface pressure observations at 
each grid point (a total of 1.5 million observations) 

•  40 2.8 GH Xeon processors; 1 Gbit Ethernet for 
communication; parallel implementation (a $150,000 
computer) 

•  Using 9x9x28 grid points patches, the entire data 
assimilation (including file movements, etc.) takes 6 
minutes for a 40-member ensemble and about 12 minutes 
for an 80-member ensemble 

Szunyogh et al.



Temperature Rms Error 
Vertical Cross-Section 

•  Except for the boundary 
layer, the error is smaller 
than the observational 
uncertainty 

•  The relatively large global 
mean error in the 
boundary layer is due to 
large errors over land 

•  We believe this is because 
we use a local column, 
and will be improved by 
using several cubes 

Szunyogh at al.



U-wind Rms Error 
Vertical Cross-Section 

•  The error is smaller than 
the observational 
uncertainty at all levels 

•  The errors are the largest 
in the jet layer 

•  The larger ensemble and 
better observational 
coverage have the most 
positive effect in the jet 
layer 

Szunyogh et al.



Assessment of results 

•  The analysis errors are larger in layers of large 
vertical gradients (in the boundary layer for the 
temperature, and in the jet layer for the wind 
component) 

•  This suggests that a vertical localization is 
desirable (work in progress, local regions will be 
cubes of atmospheric air). It should also make it 
faster. 

•  We expect that this will also allow for the 
assimilation of humidity observations 

Szunyogh et al.



Conclusions 
•  In the simulated observations tests, the LEKF is very fast, 

stable, and accurate. 
•  It can be extended to assimilate asynchronous observations 

at their right time at little additional cost (4DEnKF). 
•  It can assimilate all observations simultaneously. 
•  It can be implemented in current computers and provides 

“perfect ensemble perturbations”. 
•  The data assimilation code is model independent. 
•  Using cubes (rather than local columns) should improve 

the results and make LEKF even more efficient. 
•  We should be ready within a few months to use the LEKF 

with real observations. 
•  LEKF with 4D EnKF is ideal for assimilating AIRS 

Szunyogh et al.
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